122 research outputs found

    Optimal and fast detection of spatial clusters with scan statistics

    Full text link
    We consider the detection of multivariate spatial clusters in the Bernoulli model with NN locations, where the design distribution has weakly dependent marginals. The locations are scanned with a rectangular window with sides parallel to the axes and with varying sizes and aspect ratios. Multivariate scan statistics pose a statistical problem due to the multiple testing over many scan windows, as well as a computational problem because statistics have to be evaluated on many windows. This paper introduces methodology that leads to both statistically optimal inference and computationally efficient algorithms. The main difference to the traditional calibration of scan statistics is the concept of grouping scan windows according to their sizes, and then applying different critical values to different groups. It is shown that this calibration of the scan statistic results in optimal inference for spatial clusters on both small scales and on large scales, as well as in the case where the cluster lives on one of the marginals. Methodology is introduced that allows for an efficient approximation of the set of all rectangles while still guaranteeing the statistical optimality results described above. It is shown that the resulting scan statistic has a computational complexity that is almost linear in NN.Comment: Published in at http://dx.doi.org/10.1214/09-AOS732 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Forward stagewise regression and the monotone lasso

    Full text link
    We consider the least angle regression and forward stagewise algorithms for solving penalized least squares regression problems. In Efron, Hastie, Johnstone & Tibshirani (2004) it is proved that the least angle regression algorithm, with a small modification, solves the lasso regression problem. Here we give an analogous result for incremental forward stagewise regression, showing that it solves a version of the lasso problem that enforces monotonicity. One consequence of this is as follows: while lasso makes optimal progress in terms of reducing the residual sum-of-squares per unit increase in L1L_1-norm of the coefficient β\beta, forward stage-wise is optimal per unit L1L_1 arc-length traveled along the coefficient path. We also study a condition under which the coefficient paths of the lasso are monotone, and hence the different algorithms coincide. Finally, we compare the lasso and forward stagewise procedures in a simulation study involving a large number of correlated predictors.Comment: Published at http://dx.doi.org/10.1214/07-EJS004 in the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Beta-trees: Multivariate histograms with confidence statements

    Full text link
    Multivariate histograms are difficult to construct due to the curse of dimensionality. Motivated by kk-d trees in computer science, we show how to construct an efficient data-adaptive partition of Euclidean space that possesses the following two properties: With high confidence the distribution from which the data are generated is close to uniform on each rectangle of the partition; and despite the data-dependent construction we can give guaranteed finite sample simultaneous confidence intervals for the probabilities (and hence for the average densities) of each rectangle in the partition. This partition will automatically adapt to the sizes of the regions where the distribution is close to uniform. The methodology produces confidence intervals whose widths depend only on the probability content of the rectangles and not on the dimensionality of the space, thus avoiding the curse of dimensionality. Moreover, the widths essentially match the optimal widths in the univariate setting. The simultaneous validity of the confidence intervals allows to use this construction, which we call {\sl Beta-trees}, for various data-analytic purposes. We illustrate this by using Beta-trees for visualizing data and for multivariate mode-hunting

    Large-scale inference with block structure

    Full text link
    The detection of weak and rare effects in large amounts of data arises in a number of modern data analysis problems. Known results show that in this situation the potential of statistical inference is severely limited by the large-scale multiple testing that is inherent in these problems. Here we show that fundamentally more powerful statistical inference is possible when there is some structure in the signal that can be exploited, e.g. if the signal is clustered in many small blocks, as is the case in some relevant applications. We derive the detection boundary in such a situation where we allow both the number of blocks and the block length to grow polynomially with sample size. We derive these results both for the univariate and the multivariate settings as well as for the problem of detecting clusters in a network. These results recover as special cases the heterogeneous mixture detection problem [1] where there is no structure in the signal, as well as scan problem [2] where the signal comprises a single interval. We develop methodology that allows optimal adaptive detection in the general setting, thus exploiting the structure if it is present without incurring a relevant penalty in the case where there is no structure. The advantage of this methodology can be considerable, as in the case of no structure the means need to increase at the rate logn\sqrt{\log n} to ensure detection, while the presence of structure allows detection even if the means \emph{decrease} at a polynomial rate
    corecore